

NAP DATA INITIATIVE

Session: Early Warming System as an Effective Climate Adaption

Date: 27/03/2023

Time: 16:00 - AM

Early warning system

Risk Knowledge

(evidence-based risk assessments, incl. hazards, exposure, vulnerabilities, capacities)

Monitoring and Forecasting

(incl. detection, models & thresholds for hazrds and impacts)

Early Warning System

Communication of Warnings

(incl. timely dissemination, systems & processes, effective messages)

Preparedness and Response (incl. plans, education & drills)

EWS AND ADAPTATION

Is EWS an adaptation measure or is adaptation part of EWS?

EWS AND ADAPTATION

EWS as adaptation:

- Rapid/sudden onset threads
- Climate Change manifest itself in the present weather
- Due to CC, weather/climate has become more erratic

Adaptation/NAP as part of EWS

 Prediction (CCS) -> Risk Assessment -> Plans -> Response (Formulation & Implementation of NAPs)

NAP Data Initiative is integral part of formulation and implementation of NAP

Problem statement

Access to usable data, in particular climate scenario data, usually ranked high in gaps related to addressing adaptation and formulating NAPs In addition to climate data/scenario data, there are numerous global and regional datasets that have been meticulously put together for various (global) studies

Managing huge datasets is cumbersome, costly, and can be daunting when conducting assessments and preparing the NAP

Motivation

3

How to make data usefully available to country teams without the need to learn complex data analysis tools?

- 2 How to integrate data and analysis results easily in reports/the NAP with ability for easy continuous update when data is updated year after
 - year? How to reproduce high quality displays that are typically produced by researchers or expensive specialist consultants?
- 4 How to follow global trends in open access, data sharing, and use of state-of-the-art tools? many published papers are making their data and tools available openly via online collaborative tools such as GitHub

Approach

01	Build a system around R (using Rstudio), the open source statistical package and many useful extensions including Rmarkdown > bookdown > "napdown"
02	Markdown is a scripting language, similar to html, simpler, more standard
03	From RStudio, you can do pretty much most things – create pdfs, slides, websites, books, dashboards, etc
04	We have automated everything, and you can also find thousands other examples online that you can easily copy and reproduce high quality results;
05	RStudio of course is the R statistical package, within the RMarkdown routines, you can run Python, Fortran, C++ routines, and many more

Examples **Recipes:** Global to Local data - 28 - 26 - 24 - 22 - 20 - 18 library(raster) # define local geometry(malawi)/area of interest # use geometry to subset data tmean<-getData("worldclim", var='tmean', res=2.5)</pre> malawi0<-getData('GADM', country='MWI',</pre> mwi_tmean<-raster::crop(tmean, malawi0)</pre> gain(tmean)<-0.1</pre> level=0)%>%st_as_sf() | %>%raster::mask(malawi0) # plot global temp for January plot(malawi0\$geometry) plot(tmean\$tmean1) # plot temp for subset region plot(mwi_tmean\$tmean1) 3. Subset data to 2. Define or draw 1. Define/load Data your area of interest area of interest 2 years of Adaptation Support to the LDCs

Worldclim: Historical

Worldclim: CMIP6

Global

area and maize<-crops%>%dplyr::filter(item=="Maize",area=='Malawi')

library(FAOSTAT)
alldata<-FAOsearch()
data_folder <- "data_raw"
dir.create(data_folder)
crops<- get_faostat_bulk(code = "QCL", data_folder = data_folder)</pre>

2: Filter by

yield<-maize%>%filter(element=='Yield')%>%na.omit()%>%
group_by(year)%>%summarise(value=sum(value))
prod<-maize%>%filter(element=='Production')%>%na.omit()
%>%group_by(year)%>%summarise(value=sum(value))
colnames(yield)[colnames(yield)=="value"]<-"Yield"
colnames(prod)[colnames(prod)=="value"]<-"Production"
mycrops<-cbind(yield,prod)
mycrops<-mycrops[,-3]</pre>

3: Extract/filter by type

Numerous datasets available ... here is a sampling

	Category 📮	Variable	Description 👻	Source url	Source Resolution (G: Grid V 🚽	Year 💌	
7	Climate	Multiple	Global weather and climate extremes	World Meteorological Organisation			
8	Climate	Multiple	Hourly to seasonal regional climate model	CORDEX		2050	
9	Climate	Multiple	Daily bioclimatic, precipitation, solar	Climate Change, Agriculture and Food Security	varying		
0	Climate	Air Temperature, Precipitation	Daily weather generator of precipitation,	MarkSim Weather Generator		2010-2095	
1	Climate	Air Temperature, Precipitation	Daily bias corrected precipitation,	Projections (NEX-GDDP)	~25 km	1950-2100	
2	Climate	Multiple	Daily meteorological variables (rainfall,	Pacific (RCCAP			
3	Climate	multiple	Daily weather as well as exotic variables	Statistical Downscaling Model-Decision Centric		>1948	
4	Climate	Multiple	Monthly global climate model output	KNMI Climate Explorer			
5	Climate	Air Temperature, Precipitation	Decadal mean projections and changes in	SEA START RC Data Distribution System		2010-2090	
6	Climate	Multiple	Global climate model output (CMIP3 and	IPCC Data Distribution Center			
7	Climate	multiple	Global climate model projections (CMIP5) -	IPCC AR5 Annex1		1986-2100	
8	Climate	Multiple	Global climate model change factors	World Bank Climate Change Knowledge Portal			
9	Climate	Multiple	Portal for accessing agriculture, water,	World Bank Climate Change Knowledge Portal		2020-2100	
0	Hazards	Fire	Active fire products from the Moderate	Active Fire Data Earthdata (nasa.gov)	varying	>2002	
1	Hazards	Fire	Worldview satelite imagery	EOSDIS Worldview (nasa.gov)	varying	>1948	
2	Hazards	Fire	The Global Fire Emissions database	Data – Global Fire Emissions Database	0.25°	>1997	
3	Hazards	Fire	The Global Fire Atlas is a new freely	Fire Atlas - Global Fire Emissions Database	500m	2003-2016	
4	Hazards	Multiple	Inventories of river and urban flooding,	ThinkHazard			
5	Hazards	Multiple	National disaster risk profiles and loss	Preventionweb			
6	Hydrology	Surface water	The Global Surface Water Explorer is a	Global Surface Water - Data Access (global-			
7	Hydrology	Runofff	The Global Runoff Data Base (GRDB) is built	GRDC Data Portal (bafg.de)		1931-2020	
8	Hydrology	Multiple	HydroATLAS is a comprehensive database	Global HydroAtlas	varying		
9	Hydrology	River Basin	This database provides the first-ever	Interactive Database of the World's River Basins	unspecified		
0	Hydrology	Flood	The Aqueduct Global Flood Risk Maps	Aqueduct Global Flood Risk Maps - Datasets -	unspecified		
1	Hydrology	River Basin	This dataset contains the major and largest	Major River Basins of the World Data Catalog	unspecified		
2	Hydrology	Flood	Assesses (large) flood risks by country, river	Aqueduct Global Flood Analyzer			
3	Hydrology	Flood	Global near real-time archive of large flood	Dortmouth Flood Observatory		1985	
4	Hydrology	Runofff	Storm surface runoff and	Global Land Data Assimilation System	varying	>1948	
5	Hydrology	Multiple	Weekly and monthly water and	CAWater-Info		>1980	
6	Hydrology	Ice	Monthly ocean, ice, and hydrology	Gravity Recovery and Climate Experiment	0.25°		
7	Land cover/use	Crop genebank	Genesys is an online platform where you	Genesys PGR (genesys-pgr.org)			
8	Land cover/use	Multiple	The Global Land Service systematically	Home Copernicus Global Land Service	varying		
9	Land cover/use	Multiple	Global Forest Watch (GFW) is an online	Change Data GFW (globalforestwatch.org)		>2001	
0	Land cover/use	Multiple	10 day average values of key indicators for	ASAP - EC (europa.eu)		>1989	
1	Multiple	Multiple	The USGS FEWS NET Data Portal provides	Data Downloads Early Warning and		2001-2021	

Examples

Getting Started with RMarkdown

An Introduction to Markdown Basics

1 Prerequisites

- 1.1 Opening a markdown file
- 1.2 Installing packages
- 1.3 Loading Libraries
- 2 Getting started
 - 2.1 About rmarkdown
 - 2.2 Editing in markdown
- 3 Bookdown
 - 3.1 Setting up an Open NAP docu...

3.1.1 Some things to note

- 3.2 Some Troubleshooting
- 4 GitHub & GitHub Pages
 - 4.1 Sharing on GitHub
 - 4.2 Publishing to GitHub pages
- 5 Suggested Reads
- https://napdown.github.io/markdown_guidebook/

\equiv Q A \angle i

9 f <

3.1 Setting up an Open NAP document

We will use the package bookdown to generate NAP document in a book format. Journal articles or reports can be produced in the same way. We will also use the package tinytex to build pdf format of the book document.

1. First, launch the rstudio app in your pc.

- 2. Install the bookdown and tinytex packages. Use any of the methods shown in the Installing packages section.
- 3. Then from the menu bar go to File>->New Project->>New Directory->>Book Project using bookdown . A new window appears

 Back
 Create Book Project using bookdown

 Directory name:
 NAPBook_tutorial

 Create project as subdirectory of:
 C:/Workspace/RMardown_NAPS/Open-NAPs-Data/opennaps

napdown.github.io/Malawi/vulnerability-and-adaptation-options.html#malawis-historical-trends-and-projected-future-climate momodological ripprodon ± 2.4 Structure of the Text **3** National Contexts **Temperature Anomaly** 4.1.1 3.1 Overview Malawi 3.2 Geographical Context (Base: 1961-1990) 3.3 General Climate – Temperatur... 3.4 Socio-economic Context 3.5 The governmental, institutiona... 1.0 -Temperature Anomaly (°C) 3.6 Challenges for institutional co... 3.7 Legal frameworks 0.5 -4 Vulnerability And Adaptation Options 5 The National Adaptation Plan 0.0-5.1 Overview 5.2 Guiding Principles 5.3 Adaptation Priorities -0.5 -5.4 Implementation Strategy 1960 1980 2000 2020 5.5 Resources Mobilization Year

Examples

Recipes: Statistical plots

load /import excel data library(readxl)

gef <- read_excel("C:/Workspace/RMardown_NAPS/Open-NAPS-Data/opennaps/ O-NAPs-Dashboard/Open_NAPs_Database.xlsm", sheet = "GEF") # gef projects

regions <- read_excel("C:/Workspace/RMardown_NAPS/Open-NAPs-Data/opennaps/ O-NAPs-Dashboard/Open_NAPs_Database.xlsm", sheet = "UNCTAD_Regions") # UN regions

merge the gef projects and UN regions tables
projects<-merge(gef, regions, by='countryname', all.x = T)</pre>

create bar chart of projects by region
library(plotly)
library(dplyr)

projects %>% group_by(Region)%>%
count(gef_regions\$ID)%>%summarise("Projects"=sum(n))%>%
plot_ly(type = "bar", y = ~Projects, x = ~Region)

create treemap for projects in region x projects.regionx<-projects%%filter(Region="Latin America and the Caribbean")%% group_by(countryname, Region)%%summarise("Total"=sum(Grant))

plot_ly(data = projects_regionx,type= "treemap",values = -Total, labels--countryname, parents= -Region, name = "GCF Punding", textinfo="label+valueepercent parent")

Import excel data

Create bar chart

Create tree map

Routine

countryname	D	Title	Focal Areas	Grant	Co- Financing	Implementing Agencies
Afghanistan	2532	National Capacity Nee	NA	200000	0	United Nations Environment
Afghanistan	5664	Building Resilience of C	Climate Change	6900000	7000000	United Nations Environment
Afghanistan	3174	Development of Natio	Biodiversity	394000	70000	United Nations Environment
Afghanistan	5610	Reducing GHG Emissio	Climate Change	1735160	4811114	Food and Agriculture Organi
Afghanistan	6914	Adapting Afghan Com	Climate Change	5600000	65500000	United Nations Developmen
Afghanistan	1907	Natural Resources and	Biodiversity	975000	0	Asian Development Bank
Afghanistan	4839	Establishing Integrated	Land Degradation, Bi	6441819	53300000	United Nations Development
Afghanistan	10143	Investing in energy effi	Climate Change	1321141	9711000	United Nations Industrial De
Afghanistan	9531	Conservation of Snow	Climate Change, Biod	2704862	5951598	United Nations Development
Afghanistan	10312	Community-based Cli	Climate Change	8982420	20000000	United Nations Development
Afghanistan	10155	Strengthening capacity	Climate Change	1350000	1500000	Food and Agriculture Organi
Afghanistan	5017	Developing Core Capac	NA	910000	1575000	United Nations Environment
Afghanistan	4227	Building Adaptive Capa	Climate Change	5390000	14400000	United Nations Environment
Afghanistan	10169	Combating land degra	Land Degradation, Bi	5906850	30000000	Food and Agriculture Organi

Showing 1 to 15 of 5,310 entries, 12 total columns

https://napdown.github.io/O-NAPs-Dashboard/

