Identification of bankable projects for NAP implementation:

Technical Assistance Around Climate Information For Projects and Plans

> Jorge L. Vazquez-Aguirre Ilaria Gallo Amir Delju

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

UN4NAPs

FORUM 2023

Scan

- "Climate rationale" -> Climate Science Basis
- Provide scientific based information to build an evidence-based case for actions (projects, plans)
- Climate-sensitive or priority sectors identified by GCF National Designated Authorities
- Potential projects proposed by ministries or sectoral experts
- Context relevant (co-financing, adaptation & mitigation, aligned, traceable progress, sustainable)
- Using this method is not a guarantee of funding

METEOROLOGICAL ORGANIZATION

Weather · Climate · Water

WMO Library - https://library.wmo.int/

Developing the Climate Science Information for Climate Action

WMO No. 1287

bit.ly/Climatescienceinformation

WMO 1287 - https://library.wmo.int/

CLIMATE SCIENCE INFORMATION FOR CLIMATE ACTION

Figure 1. Four-step methodology for developing the climate science information for climate action

Four-step methodology

Wide collaboration for improved impact of climate information

Integrating climate information into climate

Integration of all actors

WMO-GCF Workshops

Climate Science Information for Climate Action

Regional Training Workshop - Johannesburg, South Africa 12-16 September 2022

Methodology implementation through face-toface worshops with multiple actors (writing hands-on) WMO, GCF, GWP, NMHS, NDA, SS, DRR, UNSW, SMHI, FAO, UNICEF, IPCC, among others.

WMO-GCF workshops

WMO-GCF Workshops

WMO-GCF workshops

Climpact (UNSW)

https://www.climpact-sci.org

27 ETCCDI indices + 45 ET-SCI indices

From daily precipitation, max temp, min temp.

Climpact is based on RClimdex PCIC software

Number of days exceeding (c) 90th percentile (TX90p)

IPCC AR6. Fig. 11.9 Trends 1960-2018

Quality Control of climate data:

- Plots of each index over time
- Files storing indices data
- Trend and threshold calculation
- Diagnostic file and plot to identify outliers and common errors in timeseries
- Correlations with sector data

Climpact indices included in National Adaptation Plans GCF project proposals

FIGURE 10 : SÉRIE TEMPORELLE RÉGIONALE DES INDICES CLIMATIQUES POUR LA RÉPUBLIQUE CENTRA-FRICAINE 1981-2019 PAR RAPPORT À LA MOYENNE 1981-2010

ET-CID output 2. Updates to Climpact; strategy; expansion.

Online Climpact v.3 available at www.climpact-sci.org

Climdex/Climpact strategy document

Climpact users by country (markers) and Climpact-related ET-SCI workshops (yellow boxes) and WMO/GCF workshops (green boxes)

Climpact/Climdex

Climate Information Platform (SMHI)

https://climateinformation.org

Future change in top indicators Change is less than 1.5 °C

	Туре	Indicator		30 year averages		Time period	
	Temperature ^	Temperature ^		Annual	^	Future, 2071 - 2100	\
Data Access Platform Download pre-calculated climate indicators and explore interactive maps and graphs.	Temperature	Temperature	^	Annual	^	Past, 1981 - 2010	^A
	Precipitation			January		Future, 2011 - 2040	
	Aridity	Max temperature	2	February		Future, 2071 - 2100	
	Soil moisture	Min temperature		March		Emission scenario (RCP)	
	Water discharge	, Frost days	10	April	- (High (RCP 8.5)	
	Water runoff 🗸 🗸	Heating degree	2	Мау	~	Low (RCP 2.6)	
		Tropical nights	~			Moderate (RCP 4.5) High (RCP 8.5)	
				GREEN CLIMATE FUND	l.		

2041-2070

0

2011-2040

-10 -1 1 10 20 30 40 nnual Precipitation. RCP 8.5 2041 - 2070% change vs 1981-2010

2071-2100

Two possible approaches

• <u>Top-down approach:</u>

- Climate data from global data sources/platforms (past, present, future projections)
- Non-climatic factors from global, regional, national indicators
- Theory of change external views

<u>Bottom-up approach:</u>

- Climate data from local sources (data-rescue, quality, capacity building, training)
- Non-climatic factors from local case studies, domestic data sources
- Theory of change internal views; co-production

Next workshop

Climate Science Information for Climate Action

Regional Training Workshop

Face-to-face

Jakarta, Indonesia Badan <u>Meteorologi</u>, <u>Klimatologi</u>, dan <u>Geofisika</u> (BMKG) 19 - 23 June 2023

• Forestry, agriculture, DRR, coasts.

- <u>Bangladesh</u>
- Indonesia
- <u>Laos</u>
- <u>Myanmar</u>
- <u>Timor-Leste</u>
- <u>WMO</u>
- <u>GCF</u>
- <u>UNDRR</u>
- <u>FAO</u>
 - <u>IPCC</u>
- <u>GWP</u> • GEO
 - - -

climatescience@wmo.int

WMO OMM

World Meteorological Organization Organisation météorologique mondiale